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Two-dimensional internal waves generated by a 
travelling oscillating cylinder 

By T. N. STEVENSON AND N. H. THOMAS 
Department of the Mechanics of Fluids, University of Manchester 

(Received 30 September 1968) 

Experiments are described in which an oscillating horizontal cylinder was 
moved through a density stratified fluid at  Reynolds numbers of between 1 and 
100 based on the diameter and mean velocity of the cylinder. The phase con- 
figurations of the internal waves which were generated are shown to compare 
very well with Lighthill’s theory for waves in dispersive systems. 

1. Introduction 
The internal wave system present when a body oscillates in a stably stratified 

medium has been considered by Gortler (1943) and Mowbray & Rarity (1967a). 
The axisymmetric waves generated by a body moving vertically with a constant 
velocity have been described by Lighthill (1967) and Mowbray & Rarity (1967 b ) ,  
and the axisymmetric wave system around an oscillating moving body has been 
described by Stevenson (1969). The two-dimensional wave system around a 
cylinder moving with constant velocity was treated theoretically by Rarity 
(1967) and experimentally by Stevenson (1968). In  all cases the experimental 
phase configuration of the internal waves compared reasonably well with the 
linear theory for small amplitude waves. 

This note is concerned with the phase configuration of the two-dimensional 
waves which are generated in a stratified fluid when a cylinder moves with a 
constant velocity on which is superimposed an oscillation of known frequency. 
A circular cylinder was traversed with a velocity normal to its horizontal longi- 
tudinal axis so that its path made an angle with the horizontal. The waves due 
to the oscillation move through the steady wave system which is stationary 
relative to the cylinder. Schlieren pictures of the resulting wave patterns are 
compared with Lighthill’s (1967) theory for dispersive waves. 

2. Theoretical predictions 
A co-ordinate system will be used with x horizontal and y vertical and positive 

upwards with the origin fixed in the body whose constant velocity relative to the 
undisturbed fluid is ( U ,  V ) .  If k, and k, are the wave-numbers in the x- and y- 
directions then the dispersion relation for short wavelength internal gravity 
waves takes the form (Stevenson 1968) 

P(w, k,, k,) = d ( k q  + k;) - w:k; = 0. (1) 
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w = (wf + U k l +  Vk,)  is the frequency governing the direction in which energy 
is propagated, wf is the frequency of the oscillatory forcing effect and 

4 = - (Slroo) (dPoldY) 
is the square of the VaisBla-Brunt frequency which will be considered constant. 
pa is the density of the undisturbed fluid and g is the acceleration due to gravity. 

In  order to plot the wave-number surfaces, (1) is written in the parametric 
form +sine-N 

( -sin 8, cos 8), W 
- (k1, k,)  = 
0 0  sin (a - 8) 

where N is the frequency ratio wf/w,,, a is the angle which the path of the body 
makes with the horizontal and W = (Uz+ V2)4 is the velocity of the body. 
Wave-number surfaces for a = 45" and 0" are presented in figures 1 and 2. 

FIGURE 1. Wave-number surfaces for ct = 45". 

The wave-number curves for a = 90" are similar to those of the axisymmetric 
case presented by Stevenson (1969). 

The regions in which energy is found are given by Lighthill's (1967) radiation 
condition. Thus the waves that exist in a certain direction from the forcing region 
are those with wave-numbers corresponding to points on the wave-number 
surface which have normals, drawn towards higher w ,  which point in that par- 
ticular direction. When N > 1 the wave-number surfaces do not pass through the 
origin, but when N < 1 the surfaces pass through the origin and their tangents 
are inclined at an angle qi to the k,-axis where @ = If: sin-lN. In  the first quadrant 
there are no waves in the steady case, N = 0, but waves are present if there is an 
oscillatory forcing term with N less than 1.0. For values of a close to it can be 
shown that waves also occur in the first quadrant when N is between 1.0 and 1.1. 
When N > 1 waves will be found behind the body in a wedge-shaped region with 
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FIGURE 2. Wave-number surfaces for a = 0". 

FIGURE 3. Phase configuration for a = 45" plotted as ywo/AU against xwo/AU when 
N is equal to (a)  0-6, ( b )  1/42?, ( c )  0.8. (d )  1.0, (e) 1.4 and (f) 2.0. The scale marks are of 
length unity. 
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an included angle which decreases as N is increased. In  general there are three 
main regimes which are (a) N < sina, ( 6 )  1 > N > sin a and (c) N > 1. However, 
r6gime (a) is absent in the limiting case when a = Oo and regime (6)  is absent 
whena = 90". 

Lighthill (1967) shows that the locus of points of constant phase is given by 
AVP/(k.VP) where k is the wave-number vector, V is the gradient operator in 
k space and A is a constant. The phase configuration evaluated from (1)  is 

(x, y) wo/A W = B cosec (a  - 0) (B  cos2 0 + cos a, B sin 8 cos 0 + sin a), (3) 
where B = sin(a-O)/( ksin0-N). 

Figure 3 shows the phase configurations when a = 45" for several frequency ratios 
and the threeregimes are seen in figure 3 (a), (c)  and (e )  corresponding to N < sin a, 
1 > N > sin a and N > 1. The change from one regime to another is seen in figure 
3 (b) for which N = sin a and in figure 3 (d) for which N = 1. Equation (3) has been 
used to calculate the wave patterns which are shown on the right-hand side of 
figures 6-9, plates 1-4. Only the first few waves of each family are shown. 

3. The experiments 
The water tank which was fdled with a stratified salt solution with a constant 

density gradient and the trolley, on which different size cylinders could be 
mounted, were the same as those used to produce the steady wave system (Steven- 
son 1968). In  the experiments the linear density distribution over the depth of 
the working section was close to the exponential distribution implied by the con- 
stant Vaisala-Brunt frequency assumed in the theory. An inhomogeneity with 
respect to wo changes the wave pattern but the effects were small in the present 
experiments. A system of levers and pulleys and two small electric motors were 
used to move the trolley with a constant velocity on which was superimposed an 
oscillation of known frequency. A schlieren system developed by Mowbray (1966) 
was used to observe the resulting wave patterns and some photographs are shown 
in figures 6-10, plates 1-4. The vertical white line in the photographs is the 
cylinder supports and we are looking along the axis of the cylinder. 

When a = 0" the wave pattern corresponding to that in figure 3 (b) occurs when 
N = 0 and equation (3) then reduces to ( x , y ) w o / A  W = (-sinB, cos8). In this 
case the waves consist of a series of semi-circles occupying the second and third 
quadrants and centred on the origin. When a = N = 0 the group velocity is given 
by Vg = _+ W cos 0. It is subject to the radiation condition and is in a direction 
making an angle 8 with the horizontal. Thus, if a body moves horizontally with 
constant velocity from a starting point S ,  energy will be found in a circle passing 
through the body and through the point S such that its centre is on the path of 
the body. As an example, in figure 8 (a), plate 3, some waves of this type are shown 
by the dashed lines. (Only the first few waves of the system are shown.) The 
experiments with a 0.24 em diameter cylinder show a semi-circular wave pattern 
within a circular region passing through the body and through the point from 
which the body started. However, the waves continue outside this region. Possibly 
&his is due to the waves created by the impulsive start or to the finite size of the 
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disturbance. A smaller cylinder 0.1 cm in diameter and 10 cm long was traversed 
horizontally with a velocity of 0*55cm/s and the improved result is shown in 
figure 10, plate 4. The cylinder was moving from right to left and the three 
photographs show the way in which the wave pattern changes with time. The 
starting point can be seen by a mark one-eighth of the picture width from the 
right-hand side of each photograph. 

0 2 4 6 8 10 12 
27rW/w,ll- NI (em) 

FIGURE 4. The distances between successive waves crossing the path of the cylinder when 
the velocity-frequency ratio is varied. The straight line is from the theory. The experimental 
points when N < 1 are represented by: 0, c( = 45O; 0 ,  a = 20"; A, a = 10"; V,  
a = Oo; and when N > 1 by: m, a = 46"; 0, a = 20'; A, a = loo; v, a = 0'. Experi- 
mental points for the steady case N = 0 are not included in the figure. 

The theoretical wave patterns calculated from (3) using the relevant values 
for a, N and w compare very well with the photographs. For a particular a and 
frequency ratio, N ,  the wave spacing depends on the velcocity ofthe body and the 
Viiisiila-Brunt frequency. The distance between the waves increases as the 
velocity of the body increases. This is illustrated clearly in figure 8 (a)-(d), plate 3, 
where the only difference between the two experiments is in the velocity of the 
cylinder which was 0.16 cm/s in one and 0.55 cm/s in the other. The same ampli- 
tude of oscillation was used for the two runs and the energy in the waves due to the 
oscillation is approximately the same in both cases whereas the first of the 
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steadily moving wave systems is much weaker than the second higher velocity 
traverse. 

Along the path of the body the distance, 5, between the waves is obtained from 
(3) by letting 0 = f in- which corresponds to fluid oscillating with the Vaisak- 
Brunt frequency. The group velocity in this case is zero and the wave spacing is 

I =  

-.---- 

given by 

I 

I 
I 
! 

! 
3T! 

I 
I 
--r-/- 

FIGURE 5 .  The growth of a wave shown with time intervals corresponding to T, the period 
of oscillation of the cylinder. The position of the cylinder at  each time is also shown. The 
axes are fixed relative to the unperturbed fluid and the scale mark is of length 5 em. The 
lines are from the theory and the points are from the experiments. (a = lo", W = 0.151 
cm/s, T = 68 s and N = 1.15.) 

which is independent of a. For each value of N there are two points at  which 
the waves with the same phase cross the path of the body (see figure 3). The 
distance between the waves with the larger spacing along the path of the body can 
be measured from the photographs and the results of this are shown in figure 4. 
The agreement between theory and experiment is good. Stevenson (1968) 
showed that the results for N = 0 also plot onto the same straight line. 

The phase configuration of a wave remains geometrically similar, but changes 
in size so that the points with horizontal tangents remain in the same horizontal 
plane because at these points the phase velocity is zero. It is not possible to 
measure the phase velocity directly from the experiments although the velocity 
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at which a particular wave crest moves along a line from the body may be 
measured. 

Theoretically this velocity is given by 

W sinesin (a- 8) 
sine-N) sin (4 - 8) ’ v, = where # = tan-l (yjz). 

( 

Along the path of the body where 8 = k &r this reduces to V, = W (  1 N)-1. 
This velocity is used together with the phase configuration to predict the growth 
of the wave shown in figure 5 which is for a = loo, N = 1.15 and W = 0-151 cm/s. 
The wave position is calculated at time intervals of T ,  where T is the period of 
oscillation of the cylinder, and it is plotted with axes stationary relative to the 
undisturbed fluid. Cine film of the experiment was projected onto this figure and 
the frame size was adjusted so that the scales were the same. The points on the 
figures show how a particular wave appeared at time intervals of T. Again the 
agreement is good. The theoretical waves in figure 5 could have been plotted 
directly using the phase configuration, the velocity of the body and the wave 
spacing along the path of the body. 

4. Concusions 
The conclusion is the same as that reached in the previous notes on internal 

waves, namely that the linearized theory predicts the phase configuration of the 
waves reasonably well. 
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FIGURE 6. Experimental and theoretical internal wavo patterns when CI = 45". (a )  and 
( b )  wo = 1.13 rad/s, W = 0.28 cm/s, N = 0.48 for the 0.94 cm diameter cylinder. ( c )  and 
( d )  w0 = 1.06 rad/s, W = 0.35 cm/s, N = 0.707 for the 0.24 cm diameter cylinder. ( e )  and 
(f) wo = 1.06 rad/s, W = 0.36 cm/s, N = 0.81 for the 0.24 cm diameter cylinder. The 
chain dotted lines arc the first harmonics and the dashed lines are the steady waves. The 
scale marks represent a length of 5 cm. 
STEVENSON ANU THOMAS (Btcczng p. 512) 
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FIGURE 7. Experimental and theoretical wave patterns. The scale marks represent a 
length of 5 em. (a )  and (6) a! = 45", w,, = 1.13 rad/s, W = 0.20 cm/s and N = 0.86 for 
t,he 0.94 cm diameter cylinder. ( c )  and ( d )  a! = 45", wo = 1.06 rad/s, W = 0.27 cmjs and 
N = 1.18 for the 0.24crn diameter cylinder. ( e )  and (f) a! = lo", wo = 1.17 rad/s, W = 0.35 
cmjs and N = 1.45 for the 0.24 cm diameter cylinder. 
STEVENSON AND THOMAS 
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FIGURE 8. Experimental and theoretical wave patterns for the 0.24 cm diameter cylinder 
moving horizontally when w,, = 1.27 rad/s. The scale marks represent a length of 5 cm. 
The dashed lines are the steady waves and the chain dotted lines are t,he first harmonics. 
(a )  and ( b )  W = 0.16 cmjs and N = 0.40. (c) and ( d )  W = 0.55 cm/s and N = 0.40. 
( e )  and ( f )  W = 0.34 cm/s and N = 0.57. 
STEVENSON AND THOMAS 
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FIGURE 9. Experimental and theoretical wave patterns for the 0.24 em diameter cylinder 
moving horizontally when OJ,, = 1.2'7 rad/s. The scale marks represent a length of 5 em. 
(a )  and ( b )  W = 0.086 cm/s and N = 0.82. (c) and ( d )  W = 0.36 cm/s and N = 1.21. 

Fmum 10. The development of a wave system when a = N = 0 and 
W = 0.55 cm/s for the 0.1 cm diameter cylinder. 

STEVENSON AND THOMAS 


